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CENTRAL LIMIT THEOREM FOR RÉNYI
DIVERGENCE OF INFINITE ORDER

By Sergey G. Bobkov ∗ and Friedrich Götze †

For normalized sums Zn of i.i.d. random variables, we explore neces-
sary and sufficient conditions which guarantee the normal approxima-
tion with respect to the Rényi divergence of infinite order. In terms
of densities pn of Zn, this is a strengthened variant of the local limit
theorem taking the form supx(pn(x)− ϕ(x))/ϕ(x)→ 0 as n→∞.

1. Introduction. Strict Subgaussianity. Let X be a random vari-
able with density p. The Rényi divergence of order α > 0, or the relative
α-entropy of its distribution with respect to the standard normal law with
density ϕ(x) = 1√

2π
exp(−x2/2) is given by

(1.1) Dα(p||ϕ) =
1

α− 1
log

∫ ∞
−∞

( p
ϕ

)α
ϕdx.

A closely related functional is the Tsallis distance

(1.2) Tα(p||ϕ) =
1

α− 1

[ ∫ ∞
−∞

( p
ϕ

)α
ϕdx− 1

]
.

Since Tα = 1
α−1 [e(α−1)Dα − 1], both distances are of a similar order, when

they are small. Hence, approximation problems in Dα and Tα are equivalent.
Moreover, as the function α→ Dα is non-decreasing, the convergence in Dα

is getting stronger for growing indexes α.
Let us recall that, for the region 0 < α < 1, Dα is topologically equiv-

alent to the total variation distance between the distribution of X and the
standard normal law. For α = 1, we obtain the Kullback-Leibler distance

D(p||ϕ) =

∫ ∞
−∞

p log
p

ϕ
dx,

also called the informational divergence or the relative entropy. It is finite, if
and only if X has a finite second moment and finite Shannon’s entropy. But,
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the range α > 1 leads to much stronger Rényi/Tsallis distances. For example,
the finiteness of Dα(p||ϕ) requires that X is subgaussian, i.e. the moments
E ecX2

should be finite for small c > 0. One important particular case α = 2
in this hierarchy corresponds to the Pearson χ2-distance T2 = χ2. For various
properties and applications of these distances, we refer an interested reader
to [22], [33], [15], [20], [34], [8].

The study of the convergence in the central limit theorem (CLT) with
respect to Dα and the associated problem of Berry-Esseen bounds have a
long and rich history. Let us remind several results in this direction about
the classical model of normalized sums

Zn = (X1 + · · ·+Xn)/
√
n

of i.i.d. random variables (Xk)k≥1. We will treat them as independent copies
of a random variable X, assuming that it has mean zero and variance one.

The convergence Dα(pn||ϕ) → 0 as n → ∞ holds true for 0 < α < 1, as
long as Zn have densities pn for large n. This is due to the corresponding
result by Prokhorov [31] about the total variation distance. The stronger
property D(pn||ϕ) → 0 in terms of relative entropy was studied by Barron
[4] who showed that the condition D(pn||ϕ) < ∞ for some n is necessary
and sufficient for the entropic CLT. The asymptotic behavior of such dis-
tances under higher order moment assumptions, including Edgeworth-type
expansions in powers of 1/n, has been studied in [6]. It is worthwhile men-
tioning that this convergence is monotone with respect to n, cf. Artstein,
Ball, Barthe and Naor [2] and Madiman and Barron [24]. See also [3] and
[7] for various entropic bounds in the non-i.i.d. case.

The range α > 1 was treated in detail in [8]. It was shown there that
Dα(pn||ϕ)→ 0 as n→∞, if and only if Dα(pn||ϕ) is finite for some n, and
if X admits the following subgaussian bound on the Laplace transform

(1.3) E etX < eα
∗t2/2, t ∈ R (t 6= 0),

where α∗ = α
α−1 . In that case, we have an equivalence Dα ∼ Tα ∼ α

2χ
2.

These results have been extended to the multidimensional setting as well.
For indexes α→∞ in (1.3), we arrive at the following characterization:

Theorem 1.1. Assume that Dα(pn||ϕ) <∞ for every α > 1 with some
n = nα. For the convergence Dα(pn||ϕ) → 0 for all α, it is necessary and
sufficient that E exp{tX} ≤ exp{t2/2} for all t ∈ R.

The last inequality describes an interesting class of probability distribu-
tions which appear naturally in many mathematical problems. More gener-
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CLT FOR RÉNYI DIVERGENCE 3

ally, one says that a random variable X with mean zero is strictly subgaus-
sian, or its distribution is strictly subgaussian (regardless of whether or not
it has density), if the inequality

(1.4) E etX ≤ eσ2t2/2, t ∈ R,

holds with constant σ2 = Var(X) which is then best possible. Note that,
when saying that X is subgaussian (with mean zero), one means that (1.4)
holds with some σ2.

This class was apparently first introduced in an explicit form by Buldy-
gin and Kozachenko in [12] under the name “strongly subgaussian” and then
analyzed in more details in their book [13]. Recent investigations include the
work by Arbel, Marchal and Nguyen [1] providing some examples and prop-
erties and by Guionnet and Husson [17]. In the latter paper, (1.4) appears
as a condition for the validity of large deviation principles for the largest
eigenvalue of Wigner matrices with the same rate function as in the case of
Gaussian entries.

A simple sufficient condition for the strict subgaussianity was given by
Newman in terms of location of zeros of the characteristic function f(z) =
E eizX , z ∈ C (which is extended, by the subgaussian property, from the real
line to the complex plane as an entire function of order at most 2). As was
stated in [25], X is strictly subgaussian, as long as f(z) has only real zeros
in C (a detailed proof was later given in [13]). Such probability distributions
form an important class denoted by L, introduced and studied by Newman
in the mid 1970’s in connection with the Lee-Yang property which naturally
arises in the context of ferromagnetic Ising models, cf. [25, 26, 27, 28]. This
class is rather rich; it is closed under infinite convergent convolutions and
under weak limits. For example, it includes Bernoulli convolutions and hence
convolutions of uniform distributions on bounded symmetric intervals.

Some classes of strictly subgaussian distributions outside L have been
recently discussed in [10]. It was shown that (1.4) continues to hold under
the weaker requirement that all zeros of f(z) with Re(z) > 0 lie in the cone
|Arg(z)| ≤ π

8 (which is sharp when f has only one zero in the positive oc-
tant). In that case, if X is not normal, the inequality (1.4) may be sharpened
as follows: For any t0 > 0, there is c = c(t0), 0 < c < σ2 = Var(X), such that

(1.5) E etX ≤ ect2/2, |t| ≥ t0.

In general, this separation-type property is however not necessary for
the strict subgaussianity. It turns out ([10]) that there exists a large class
of strictly subgaussian distributions with mean zero and variance one, for
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which the Laplace transform has the form

E etX = Ψ(t) et
2/2, t ∈ R,

where Ψ(t) is a periodic function with some period h > 0 and such that
Ψ(t) ≤ 1 for all t ∈ R. Hence Ψ(kh) = 1 for all k ∈ Z, so that (1.4) becomes
an equality for infinitely many points t.

2. Main Results for the Convergence in D∞. Thus, the strict
subgaussianity appears as a necessary condition for the convergence in all
Dα and therefore in D∞, which according to (1.1) is given by the limit

D∞(p||ϕ) = lim
α→∞

Dα(p||ϕ) = ess supx log(p(x)/ϕ(x)).

Although the Tsallis distance of infinite order may not be defined similarly
as a limit of (1.2), we make the convention that

T∞(p||ϕ) = ess supx
p(x)− ϕ(x)

ϕ(x)
.

Then T∞ = eD∞ − 1 like for the Tsallis distance of finite order, so that
convergence in D∞ and T∞ are equivalent. In particular, in the setting of the
normalized sums Zn, the CLT D∞(pn||ϕ)→ 0 is equivalent to the assertion
that Zn have densities pn such that

(2.1) sup
x

pn(x)− ϕ(x)

ϕ(x)
→ 0 as n→∞.

The purpose of this paper is to give necessary and sufficient conditions
for this variant of the CLT in terms of the Laplace transform L(t) = E etX .
Consider the log-Laplace transform K(t) = logL(t) (which is a convex,
smooth function) and the associated function

A(t) =
1

2
t2 −K(t), t ∈ R.

As before, suppose that (Xk)k≥1 are independent copies of the random vari-
able X with EX = 0 and Var(X) = 1. We assume that:

1) Zn has density pn with T∞(pn||ϕ) <∞ for some n = n0;
2) X is strictly subgaussian, that is, A(t) ≥ 0 for all t ∈ R.

Theorem 2.1. For the convergence T∞(pn||ϕ) → 0, it is necessary and
sufficient that the following two conditions are fulfilled:
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CLT FOR RÉNYI DIVERGENCE 5

a) A′′(t) = 0 for every point t ∈ R such that A(t) = 0;
b) limk→∞A

′′(tk) = 0 for every sequence tk → ±∞ such that A(tk)→ 0
as k →∞.

The conditions a)− b) may be combined as limA(t)→0A
′′(t) = 0, which is

kind of continuity of A′′ with respect to A.
Under the separation property (1.5), the condition b) is fulfilled automat-

ically, while the equation A(t) = 0 has only one solution t = 0. But near zero,
due to the strict subgaussianity, A(t) = O(t4) and A′′(t) = O(t2). Hence, the
condition a) is fulfilled as well, and we obtain the CLT with respect to D∞.
In particular, it is applicable to the class L of Newman described above. In
fact, for this conclusion, (1.5) may further be weakened to

(2.2) sup
|t|≥t0

[
e−t

2/2 E etX
]
< 1 for all t0 > 0.

In this case one can additionally explore the rate of convergence.

Theorem 2.2. Let X be a non-normal random variable with Var(X) = 1
satisfying (2.2). If T∞(pn||ϕ) <∞ for some n, then

(2.3) T∞(pn||ϕ) = O
( 1

n
(log n)3

)
as n→∞.

Furthermore, specializing Theorem 2.1 to the case where the Laplace
transform contains a periodic component, we have:

Theorem 2.3. Suppose that the function Ψ(t) = L(t) e−t
2/2 is h-periodic

for a smallest value h > 0. For the convergence T∞(pn||ϕ) → 0 as n → ∞,
it is necessary and sufficient that, for every 0 < t < h,

(2.4) Ψ(t) = 1 ⇒ Ψ′′(t) = 0.

Moreover, if the equation Ψ(t) = 1 has no solution in 0 < t < h, then the
relation (2.3) about the rate of convergence continues to hold.

For an illustration (cf. Section 9 for more details), consider random vari-
ables X with Ψ(t) = 1− c sin4 t, where the parameter c > 0 is small enough.
In this case, Ψ(t) is π-periodic and all conditions in Theorem 2.3 are fulfilled.
Hence the CLT for T∞ does hold with rate as in (2.3). On the other hand,
in a similar π-periodic example

Ψ(t) = 1− c (1− 4 sin2 t)2 sin4 t,
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the condition (2.4) is violated at the point t = π/6, so there is no CLT. Thus,
the continuity condition of A′′ with respect A in Theorem 2.1 may or may
not be fulfilled in general in the class of strictly subgaussian distributions.

Returning to the convergence property (2.1), it should be emphasized
that it is not possible to put the absolute value sign in the numerator (this
will be clarified in Section 4). The situation is of course different, when one
considers the supremum over bounded increasing intervals. For example,
under suitable moment assumptions (cf. [29], [30]), it follows from Edgeworth
expansions for densities that

sup
|x|≤c

√
logn

|pn(x)− ϕ(x)|
ϕ(x)

→ 0 as n→∞.

The proof of Theorem 2.1 is given in Section 8, with preliminary devel-
opments in Sections 3-7. Its application to the periodic case is discussed in
Section 9. What is unusual in our approach is that the proof does not use
in essence the tools from Complex Analysis (as one ingredient, we estab-
lish a uniform local limit theorem for bounded densities with a quantitative
error term). However, in the study of rates of convergence with respect to
T∞, we employ an old result by Richter [32] in a certain refined form on
the asymptotic behavior of ratios pn(x)/ϕ(x). This result is discussed in the
last Section 10, where we also include the proof of Theorems 2.2-2.3 (for
the rate of convergence). In the last section, we describe several examples of
probability distributions satisfying the condition 1), needed for applicability
of Theorems 2.1-2.2.

3. Semigroup of Shifted Distributions (Esscher Transform). Let
X be a subgaussian random variable with density p. Here and in the sequel,
the subgaussianity is understood as the property that E ecX2

<∞ for some
c > 0 (which is equivalent to (1.4) with some σ2 when X has mean zero).

Then, the Laplace transform, or the moment generating function

(Lp)(t) = L(t) = E etX =

∫ ∞
−∞

etxp(x) dx

is finite for all complex numbers t and represents an entire function in the
complex plane. Hence the log-Laplace transform

(Kp)(t) = K(t) = logL(t) = logE etX , t ∈ R,

represents a convex, C∞-smooth function on the real line.
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CLT FOR RÉNYI DIVERGENCE 7

Definition 3.1. Introduce the family of probability densities

(3.1) Qhp(x) =
1

L(h)
ehxp(x), x ∈ R,

with parameter h ∈ R. We call the distribution with this density the shifted
distribution of X at step h.

The early history of this well-known and popular transform goes back to
1930’s. In actuarial science, following Esscher [16], the density Qhp is com-
monly called the Esscher transform of p. Other names “conjugate distribu-
tion laws”, “the family of distribution laws conjugate to a system” were used
by Khinchin [21] in the framework of statistical mechanics. See also Daniels
[14] who applied this transform to develop asymptotic expansions for densi-
ties. In this paper, we prefer to use a different terminology as in Definition
3.1 in order to emphasize the following important fact: For the standard
normal density ϕ(x), the shifted normal law has density Qhϕ(x) = ϕ(x+h).

A remarkable property of the transform (2.1) is the semi-group property

Qh1(Qh2p) = Qh1+h2p, h1, h2 ∈ R.

Let us also mention how this transform acts under rescaling. Given λ > 0,
the random variable λX has density pλ(x) = 1

λ p(
x
λ) with Laplace transform

(Lpλ)(t) = L(λt). Hence

Qhpλ(x) =
1

(Lpλ)(h)
ehxpλ(x) =

1

λ
(Qλhp)

(x
λ

)
.

This identity implies that the maximum-of-density functionalM(X) = M(p) =
ess supx p(x) satisfies

(3.2) M(Qhpλ) =
1

λ
M(Qλhp).

The transform Qh is also multiplicative with respect to convolutions.

Proposition 3.2. If independent subgaussian random variables have
densities p1, . . . , pn, then for the convolution p = p1 ∗ · · · ∗ pn, we have

(3.3) Qhp = Qhp1 ∗ · · · ∗Qhpn.

Proof. It is sufficient to compare the Laplace transforms of both sides in
(3.3). The Laplace transform of p is given by Lp(t) = (Lp1)(t) . . . (Lpn)(t).
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Hence, the Laplace transform of Qhp is given by

(LQhp)(t) =

∫ ∞
−∞

etxQhp(x) dx =
1

(Lp)(t)

∫ ∞
−∞

e(t+h)xp(x) dx

=
(Lp)(t+ h)

(Lp)(t)
=

n∏
k=1

(Lpk)(t+ h)

(Lpk)(t)
=

n∏
k=1

(LQhpk)(t).

The formula (3.1) in Definition 3.1 may be written equivalently as

p(x) = L(h)e−xhQhp(x) = e−xh+K(h)Qhp(x),

or
p(x)

ϕ(x)
=
√

2π e
1
2
(x−h)2− 1

2
h2+K(h)Qhp(x).

Introduce the function

(3.4) (Ap)(h) = A(h) =
1

2
h2 −K(h),

which allows to reformulate the strict subgaussianity via the inequality
A(h) ≥ 0 for all h (under the assumptions EX = 0, Var(X) = 1). Thus,

(3.5)
p(x)

ϕ(x)
=
√

2π e
1
2
(x−h)2−A(h)Qhp(x).

We will use this representation to bound the ratio on the left-hand side
for the densities pn of the normalized sums

(3.6) Zn =
X1 + · · ·+Xn√

n

of independent copies of the random variable X with density p. In order to
apply (3.5) to pn instead of p, put xn = x

√
n, hn = h

√
n. Note that in terms

of L = Lp, K = Kp and A = Ap, we may write

(Lpn)(t) = L(t/
√
n)n = enK(t/

√
n),

(Kpn)(t) = nK(t/
√
n),

(Apn)(hn) =
1

2
h2n − (Kpn)(hn) =

n

2
h2 − nK(h) = nA(h).

Therefore, the ratio (3.5) being applied with (xn, hn) becomes:
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CLT FOR RÉNYI DIVERGENCE 9

Proposition 3.3. Putting xn = x
√
n, hn = h

√
n (x, h ∈ R), we have

(3.7)
pn(x
√
n)

ϕ(x
√
n)

=
√

2π e
n
2
(x−h)2−nA(h)Qhnpn(xn).

This equality is useful, if we are able to bound the factor Qhnpn(xn)
uniformly over all x for a fixed value of h as stated in the following Corollary.

Corollary 3.4. For all x, h ∈ R,

(3.8)
pn(x
√
n)

ϕ(x
√
n)
≤
√

2π e
n
2
(x−h)2−nA(h)M(Qh

√
n pn).

Remark 3.5. Since the function K is convex, it follows from the defi-
nition (3.4) that A′′(h) ≤ 1 for all h ∈ R. As a consequence, this function
satisfies a differential inequality

(3.9) A′(h)2 ≤ 2A(h), h ∈ R,

if A(h) ≥ 0 for all h ∈ R. For a short proof (proposed by the referee), one
may apply the Taylor formula

0 ≤ A(h+ x) = A(h) +A′(h)x+
1

2
A′′(h1)x

2

≤ A(h) +A′(h)x+
1

2
x2, x ∈ R,

holding for some point h1 in the segment with endpoints h and h+ x. Min-
imizing the right-hand side over all x leads to (3.9).

4. Maximum of Shifted Densities. In order to bound the last term
in (3.8), suppose that the distribution of X has a finite Rényi distance of
infinite order to the standard normal law. This means that the density of X
admits a pointwise upper bound

(4.1) p(x) ≤ cϕ(x), x ∈ R (a.e.)

for some constant c. Note that its optimal value is c = 1 +T∞(p||ϕ). In that
case, one may control the maximum of densities of shifted distributions

M(Qhp) = ess supxQhp(x).

Indeed, (4.1) implies that, for any x ∈ R,

Qhp(x) =
1

L(h)
exhp(x) ≤ c exh−x

2/2

L(h)
√

2π
≤ c eh

2/2

L(h)
√

2π
=

c√
2π

eA(h),
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where L = Lp and A = Ap. Thus,

(4.2) M(Qhp) ≤
c√
2π

eA(h).

However, it is useless to apply this bound directly to the densities pn of
the normalized sums Zn as in (3.6), since then the right-hand side of (4.2) will
contain the parameter cn = 1 + T∞(pn||ϕ). Instead, we use a semi-additive
property of the maximum-of-density functional, which indicates that

M(X1 + · · ·+Xn)−2 ≥ 1

2

n∑
k=1

M(Xk)
−2

for all independent random variables Xk having bounded densities, cf. [5],
p. 105, or [9], p. 142. If all Xk are identically distributed and have density p,
this relation yields

M(p∗n) ≤
√

2/nM(p)

for the convolution n-th power of p. Applying Proposition 3.2 together with
(4.2), we then have

M(Qhp
∗n) ≤

√
2/nM(Qhp) ≤

√
2/n

c√
2π

eA(h).

On the other hand, since p∗n(x) = 1
λ pn(xλ) with λ =

√
n, one may apply the

identity (3.2):

M(Qhp
∗n) =

1√
n
M(Qh

√
n pn).

Hence
M(Qh

√
n pn) ≤ c√

π
eA(h).

Let us now return to Corollary 3.4 and apply this bound to get that

pn(x
√
n)

ϕ(x
√
n)
≤ c
√

2 e
n
2
(x−h)2−(n−1)A(h),

recalling that c = 1 + T∞(p||ϕ). In particular, with h = x this yields:

Proposition 4.1. Let pn denote the density of Zn constructed for n
independent copies of a subgaussian random variable X whose density p has
finite Rényi distance of infinite order to the standard normal law. Then, for
almost all x ∈ R,

(4.3)
pn(x
√
n)

ϕ(x
√
n)
≤ c
√

2 e−(n−1)A(x).
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Corollary 4.2. If additionally EX = 0, Var(X) = 1, and X is strictly
subgaussian, then

T∞(pn||ϕ) ≤
√

2
(
1 + T∞(p||ϕ)

)
− 1.

Thus, the finiteness of the Tsallis distance T∞(p||ϕ) for a strictly subgaus-
sian random variable X with density p ensures the boundedness of T∞(pn||ϕ)
for all normalized sums Zn.

If A(x) is bounded away from zero, the inequality (4.3) shows that
pn(x
√
n)/ϕ(x

√
n) is exponentially small for growing n. In particular, this

holds for any non-normal random variable X satisfying the separation prop-
erty (2.2). Then we immediately obtain:

Corollary 4.3. Suppose that X has a density p with finite T∞(p||ϕ).
Under the condition (2.2), for any τ0 > 0, there exist A > 0 and δ ∈ (0, 1)
such that the densities pn of Zn satisfy

(4.4) pn(x) ≤ Aδnϕ(x), |x| ≥ τ0
√
n.

In particular,

lim inf
n→∞

sup
x∈R

|pn(x)− ϕ(x)|
ϕ(x)

≥ 1.

Therefore, one can not hope to strengthen the Tsallis distance by introducing
a modulus sign in the definition of the distance.

Since (2.2) does not need be true in general, Proposition 4.1 will be
applied outside the set of points where A(x) is bounded away from zero.
More precisely, for a parameter a > 0 and n ≥ 2, define the critical zone

(4.5) An(a) = {h > 0 : A(h) ≤ a/(n− 1)}.

From (4.3), it follows that

(4.6)
pn(x
√
n)

ϕ(x
√
n)
≤ c
√

2 e−a, x /∈ An(a).

If a is large, this bound may be used in the proof of the CLT with respect to
the distance T∞ restricted to the complement of the critical zone. As for this
zone, the bound (4.3) is not appropriate, and we need to return to the basic
representation from Proposition 3.2. To study the last term Qhnpn(xn) in
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(3.7) for x ∈ An(a), one may apply a variant of the local limit theorem, using
the property that the density Qhnpn has a convolution structure. However,
in order to justify this application, we should first explore the behavior of
moments of densities participating in the convolution.

5. Moments of Shifted Distributions. For a subgaussian random
variable X with density p, denote by X(h) a random variable with density
Qhp (h ∈ R). It is subgaussian, and its Laplace and log-Laplace transforms
are given by

Lh(t) ≡ E etX(h) =
L(t+ h)

L(h)
,

Kh(t) ≡ logLh(t) = K(t+ h)−K(h).(5.1)

Furthermore, it has mean and variance

mh ≡ EX(h) =
L′(h)

L(h)
= K ′(h),

σ2h ≡ Var(X(h)) =
L′′(h)L(h)− L′(h)2

L(h)2
= K ′′(h).

The last equality shows that necessarily K ′′(h) > 0 for all h ∈ R. Indeed,
otherwise the random variable X(h) would be a constant a.s.

The question of how to bound the standard deviation σh from below
relies upon certain fine properties of the density p and the behavior of the
function A(h) = 1

2h
2 −K(h). As before, suppose that the distribution of X

has finite Rényi distance of infinite order to the standard normal law, i.e.

(5.2) p(x) ≤ cϕ(x), x ∈ R,

with c = 1 + T∞(p||ϕ). Then one may control the maximum M(X(h)) =
ess supx ph(x) of densities of shifted distributions, using (4.2):

Qhp(x) ≤ c√
2π

eA(h).

For a lower bound, we employ a well-known general relation

M(ξ)2 Var(ξ) ≥ 1

12

(where the equality is attained for the uniform distribution on a bounded
interval). Let us provide the following simple argument, assuming without
loss of generality that a random variable ξ has finite variance and a density
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with M(ξ) = 1. Then, the function H(x) = P{|ξ − Eξ| ≥ x} is absolutely
continuous, and its Radon-Nikodym derivative satisfies H ′(x) ≥ −2 a.e. in
x > 0. Since H(0) = 1, we get H(x) ≥ 1− 2x for all x ≥ 0 and therefore

Var(ξ) = 2

∫ ∞
0

xH(x) dx ≥ 2

∫ 1/2

0
x(1− 2x) dx =

1

12
.

Applying this to ξ = X(h) and combining the two bounds, we obtain that

1√
12
≤M(X(h))σh ≤

cσh√
2π

eA(h).

Thus we arrive at:

Lemma 5.1. Under the condition (5.2), for all h ∈ R,

(5.3) σh ≥
√

π

6c2
e−A(h).

Since σh > 0, one may consider the normalized random variables

(5.4) X̂(h) =
X(h)− EX(h)√

Var(X(h))
=
X(h)−mh

σh
.

By (5.1), they have the moment generating function

E etX̂(h) = E exp
{ t

σh
(X(h)−mh)

}
= exp

{
− t

σh
K ′(h)

} L(h+ t
σh

)

L(h)

and the log-Laplace transform

(5.5) K̂h(t) = K
(
h+

t

σh

)
−K(h)− t

σh
K ′(h).

In order to estimate (5.5) from above, assume that K(h) ≤ 1
2 h

2, i.e.
A(h) ≥ 0 for all h. For h ∈ An(a), the definition (4.5) implies that

K(h) ≥ 1

2
h2 − a

n− 1
,

and hence

K̂h(t) ≤ 1

2

(
h+

t

σh

)2
− 1

2
h2 +

a

n− 1
− t

σh
K ′(h)

=
1

2

( t

σh

)2
+

a

n− 1
+

t

σh
(h−K ′(h)).(5.6)
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Here the term h−K ′(h) = A′(h) can be estimated by virtue of the inequality
(3.9), which gives

|h−K ′(h)|2 ≤ 2A(h) ≤ 2a

n− 1

and

|t|
σh
|h−K ′(h)| ≤ 1

2

( t

σh

)2
+

1

2
|h−K ′(h)|2

≤ 1

2

( t

σh

)2
+

a

n− 1
,

where we used ab ≤ 1
2a

2 + 1
2b

2 (a, b ∈ R). It follows from (5.6) that

K̂h(t) ≤
( t

σh

)2
+

2a

n− 1
.

Here, the right-hand side is bounded for sufficiently small |t| and sufficiently
large n. One may require, for example, that n ≥ 4a + 1 and |t| ≤ 1√

2
σh, in

which case K̂h(t) ≤ 1, so that

E e|t|X̂(h) ≤ E etX̂(h) + E e−tX̂(h) ≤ 2e.

Using x3e−|t|x ≤ (3e )3 |t|−3 (x ≥ 0), this gives E |X̂(h)|3 ≤ 2e (3e )3 |t|−3. One
can summarize.

Lemma 5.2. If the Laplace transform of a subgaussian random variable
X is such that A(h) ≥ 0 for all h ∈ R, then for all h ∈ An(a) with n ≥ 4a+1,
we have

E eσh|X̂(h)|/
√
2 < 2e.

As a consequence,

(5.7) E |X̂(h)|3 ≤ Cσ−3h

up to some absolute constant C > 0.

This lemma will be used in the CLT for the n-th convolution powers of
distributions of X̂(h) for the parameters h from the critical zone.

As can be seen from the proof, the inequality (5.7) may be actually
written in a more flexible form

(5.8) E |X(h)−mh|3 ≤ C
(
1 +A(h)3/2

)
without any restriction on h. Let us state one application of this bound
which will be needed in the last step of the proof of Theorem 2.1.
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Lemma 5.3. Under the same assumptions, for any a > 0,

(5.9) lim
n→∞

inf
h∈An(a)

A′′(h) ≥ 0.

Proof. The above limit exists, since the zones An(a) are shrinking for
growing n and therefore the infima in (5.9) are increasing. We start with the
identity

E (X(h)−mh)3 = K ′′′(h) = −A′′′(h),

which implies, by (5.8),

(5.10) |A′′′(h)| ≤ C
(
1 +A(h)3/2

)
, h ∈ R.

As the function A is non-negative, A′′(h) ≥ 0 as long as A(h) = 0.
Assume that 0 < A(h) ≤ 1. Applying the integral Taylor formula and

the property A′′ ≤ 1 together with (3.9), we get that, for any h1 ∈ |h, h+ 1],

A(h1)−A(h) = A′(h)(h1 − h) +

∫ h1

h
A′(z)(h1 − z) dz

≤
√

2A(h) |h1 − h|+
1

2
|h1 − h|2 < 2.

Hence A(h1) < 3, so that by (5.10), |A′′′(h1)| ≤ C with some absolute
constant C > 0.

Now, let us apply once more the integral Taylor formula and write

A(h+ x) = A(h) +A′(h)x+
1

2
A′′(h)x2 +

1

6
A′′′(h1)x

3, x ∈ [0, 1],

which holds for some point h1 ∈ [h, h + x]. Since this expression is non-
negative, applying (3.9) once more, it follows that

A′′(h) ≥ − 2

x2

[
A(h) +

√
2A(h)x+

1

6
Cx3

]
.

In particular, the choice x = A(h)1/4 leads to A′′(h) ≥ −C ′A(h)1/4. This
bound holds for all h ∈ An(a) with n ≥ 2a+ 1, implying

inf
h∈An(a)

A′′(h) ≥ −C ′
( a

n− 1

)1/4
.

Letting n→∞, we arrive at (5.9).
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6. Local Limit Theorem for Bounded Densities. Before we can
apply the representation (3.7), in the next step we need to establish a uni-
form local limit theorem with a quantitative error term. Let (Xk)k≥1 be
independent copies of a random variable X with EX = 0, Var(X) = 1,
β3 = E |X|3 <∞, which has a bounded density. Then the normalized sums
Zn have bounded continuous densities pn for all n ≥ 2 satisfying

sup
x
|pn(x)− ϕ(x)| = O

( 1√
n

)
(n→∞).

See for example [29, 30]. Let us quantify the error O-term in terms of β3
and the maximum of density M = M(X).

Lemma 6.1. With some positive absolute constant C, we have

(6.1) sup
x
|pn(x)− ϕ(x)| ≤ C M2β3√

n
.

Proof. Since M ≥ 1/
√

12 and β3 ≥ 1, while M(pn) ≤
√

2M for all n (cf.
Section 4), we may assume that n ≥ 4.

Denote by f(t) the characteristic function of X. By the boundedness
assumption, the characteristic functions

fn(t) = E eitZn = f(t/
√
n)n, t ∈ R,

are integrable for all n ≥ 2. Indeed, by the Plancherel theorem,∫ ∞
−∞
|f(t)|n dt ≤

∫ ∞
−∞
|f(t)|2 dt = 2π

∫ ∞
−∞

p(x)2 dx ≤ 2πM.

Hence, one may apply the Fourier inversion formula to represent the densities
of Zn as

pn(x) =
1

2π

∫ ∞
−∞

e−itxfn(t) dt, x ∈ R.

Using a similar representation for the normal density, we get

|pn(x)− ϕ(x)| ≤ 1

2π

∫ ∞
−∞
|fn(t)− et2/2| dt.

As is well-known (cf. e.g. [30], p. 109),

|fn(t)− et2/2| ≤ 16
β3√
n
|t|3 e−t2/3, |t| ≤

√
n

4β3
,
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which yields ∫
|t|≤

√
n

4β3

|fn(t)− et2/2| dt ≤ Cβ3√
n

with some absolute constant C. As for large values of |t|, it was shown in
[9], p. 145, that, for any ε ∈ (0, 1] and n ≥ 4,∫

|t|≥ε
|f(t)|n dt ≤ 4πM√

2n
exp

{
− nε2/(5200M2)

}
.

This gives∫
|t|≥

√
n

4β3

|fn(t)| dt =
√
n

∫
|t|≥ 1

4β3

|f(t)|n dt ≤ 4πM√
2

exp
{
− c0n/(β23M2)

}
.

Since M is bounded away from zero, a similar estimate holds true for the
normal characteristic function as well. As a result, we arrive at

|pn(x)− ϕ(x)| ≤ C0

( β3√
n

+M exp{−c0n/(β23M2)}
)

with some positive absolute constants C0 and c0, Using e−x < x−1/2 (x > 0),
the second term in the brackets is dominated by the first one up to the
multiple of M2. Hence, the above estimate may be simplified to (6.1).

7. Local Limit Theorem for Shifted Densities. An application of
Lemma 6.1 to the normalized sums of independent copies of random vari-
ables X̂(h) defined in (5.4) leads to the following refinement of the represen-
tation (3.7) from Proposition 3.3, when the point x belongs to the critical
zone A(x) ≤ a

n−1 . Define

vx =
x−mx

σx
=
x−K ′(x)

σx
=
A′(x)

σx
,

where we recall that mx = K ′(x) and σ2x = K ′′(x).

Lemma 7.1. If the Laplace transform of a subgaussian random variable
X with finite constant c = 1 +T∞(p||ϕ) is such that A(h) ≥ 0 for all h ∈ R,
then for all x ∈ An(a) with n ≥ 4(a+ 1), we have

(7.1)
pn(x
√
n)

ϕ(x
√
n)

=
1

σx
e−nA(x)−nv

2
x/2 +

Bc4√
n
,

where B = Bn(x) is bounded by an absolute constant.
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Proof. Let us return to the term Qhnpn in (3.7) with hn = h
√
n. By

Proposition 3.2, this density has a convolution structure. Recall that, for
any random variable X with density p = pX ,

QhpλX(x) =
1

λ
(Qλh p)

(x
λ

)
.

Using this notation, pn = pSn/
√
n in terms of the sum Sn = X1 + · · ·+Xn.

Hence with λ = 1/
√
n,

Qhnpn(x) =
√
n (Qh pSn)(x

√
n) =

√
n (Qhp) ∗ · · · ∗ (Qhp)(x

√
n),

where we applied Proposition 3.2 in the last step. By the definition, Qhp is
the density of the random variable X(h). Hence, Qhnpn(x) represents the
density for the normalized sum

Zn,h ≡ (X1(h) + · · ·+Xn(h))/
√
n,

assuming that Xk(h) are independent. Introduce the normalized sums

(7.2) Ẑn,h ≡ (X̂1(h) + · · ·+ X̂n(h))/
√
n

for the shifted distributions (5.4), i.e. with Xk(h) = mh + σhX̂k(h). Thus,

Zn,h = mh

√
n+ σhẐn,h.

Denote by p̂n,h the density of Ẑn,h. Then the density of Zn,h is given by

pn,h(x) =
1

σh
p̂n,h

(x−mh
√
n

σh

)
, x ∈ R.

At the points xn = x
√
n as in (3.7), we therefore obtain that

Qhnpn(xn) = pn,h(xn) =
1

σh
p̂n,h

(x−mh

σh

√
n
)
.

Consequently, the equality (3.7) may be equivalently stated as

pn(x
√
n)

ϕ(x
√
n)

=
√

2π e
n
2
(x−h)2−nA(h) 1

σh
p̂n,h

(x−mh

σh

√
n
)
.

In particular, for h = x, we get

(7.3)
pn(x
√
n)

ϕ(x
√
n)

=
√

2π e−nA(x)
1

σx
p̂n,x(vx

√
n).
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We are now in a position to apply Lemma 6.1 to the sequence X̂k(x) and
write

(7.4) p̂n,x(z) = ϕ(z) +B
β3(x)M(x)2√

n
, z ∈ R,

where the quantity B = Bn(z) is bounded by an absolute constant, β3(x) =
E |X̂(x)|3 and M(x) = M(X̂(x)). The latter maximum can be bounded by
virtue of the upper bound (4.2):

M
(
X̂(x)

)
= σxM(X(x)) = σxM(Qxp) ≤

cσx√
2π

eA(x).

In this case, (7.4) may be simplified with a new B to

p̂n,x(z) = ϕ(z) +Bc2
β3(x)σ2x√

n
e2A(x).

Inserting this in (7.3) with z = vx
√
n, again with a new B we arrive at

pn(x
√
n)

ϕ(x
√
n)

=
1

σx
e−nA(x)−nv

2
x/2 +Bc2

β3(x)σx√
n

e−(n−2)A(x).

To further simplify, assume that x ∈ An(a) with n ≥ 4(a+ 1). Then, by
Lemmas 5.1-5.2, β3(x) ≤ Cσ−3x , while σ−1x ≤ 2c eA(x). Hence,

β3(x)σx e
−(n−2)A(x) ≤ 4Cc2 e−(n−4)A(x) ≤ 4Cc2.

8. Proof of Theorem 2.1. Recall that the assumptions 1)-2) stated
before Theorem 2.1 are necessary for the convergence T∞(pn||ϕ) → 0 as
n → ∞. For simplicity, we assume that n0 = 1, that is, X is a strictly
subgaussian random variable with mean zero, variance one, and with finite
constant c = 1 + T∞(p||ϕ). In particular, the function

A(x) =
1

2
x2 −K(x)

is non-negative on the whole real line.
Sufficiency part. The critical zones An(a) = {x ∈ R : A(x) ≤ a

n−1}
was defined for a parameter a > 0 and n ≥ 2. Choosing a = log(1/ε) for a
given ε ∈ (0, 1), we have, by (4.6),

(8.1) sup
x/∈An(a)

pn(x
√
n)

ϕ(x
√
n)
≤ c
√

2 ε.
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In the case x ∈ An(a) with n ≥ 4(a+ 1), the equality (7.1) is applicable
and implies

sup
x∈An(a)

pn(x
√
n)

ϕ(x
√
n)
≤ sup

x∈An(a)

1

σx
+O

( 1√
n

)
,

where we recall that σ2x = K ′′(x). Using (8.1), we conclude that

1 + T∞(pn||ϕ) ≤ sup
x∈An(a)

1

σx
+ c
√

2 ε+O
( 1√

n

)
.

Thus, a sufficient condition for the convergence T∞(pn||ϕ) → 0 as n → ∞
is that, for any ε ∈ (0, 1),

lim sup
n→∞

sup
x∈An(log(1/ε))

σ−2x ≤ 1.

Equivalently, we need to require that lim infn→∞ infx∈An(a) K
′′(x) ≥ 1 for

any a > 0, that is,
lim sup
n→∞

sup
x∈An(a)

A′′(x) ≤ 0.

Since A(x) = O(1/n) on every set An(a), the above may be written as the
following continuity condition

(8.2) lim
A(x)→0

max(A′′(x), 0) = 0.

Necessity part. To see that the condition (8.2) is also necessary for the
convergence in T∞, let us return to the representation (7.1). Assuming that
T∞(pn||ϕ)→ 0, it implies that, for any a > 0,

(8.3) lim sup
n→∞

sup
x∈An(a)

1

σx
exp

{
− n

(
A(x) +

1

2
v2x

)}
≤ 1,

where vx = A′(x)/σx. Recall that

A′(x)2 ≤ 2A(x), σ−2x ≤
6

π
c2eA(x)

(cf. Remark 3.5 and Lemma 5.1). Hence

v2x ≤
2A(x)

σ2x
≤ 12

π
c2eA(x)A(x) ≤ 12 c2A(x),

assuming that x ∈ An(a) with a ≤ 1 and n ≥ 2 in the last step. Since
nA(x) ≤ 2a on the set An(a) and c ≥ 1, it follows that

A(x) +
1

2
v2x ≤ 7c2A(x) ≤ 14c2

n
a.
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Thus, (8.3) implies that

lim sup
n→∞

sup
x∈An(a)

σ−1x ≤ e14c
2a, 0 < a ≤ 1.

Therefore, for all n ≥ n(a),

inf
x∈An(a)

K ′′(x) ≥ e−30c2a.

Since a may be as small as we wish, we conclude that, for any ε > 0, there
is δ > 0 such that A(x) ≤ δ ⇒ K ′′(x) ≥ 1− ε, or A(x) ≤ δ ⇒ A′′(x) ≤ ε.
But this is the same as (8.2). Moreover, in view of Lemma 5.3, this property
may be simplified to limA(x)→0A

′′(x) = 0.

One wide class of strictly subgaussian distributions with mean zero and
variance one is described in terms of the Laplace transform L(t) = EetX via
the potential requirement (2.2), i.e.

(8.4) L(t) ≤ (1− δ) et2/2

for all t0 > 0 and |t| ≥ t0 with some δ = δ(t0), δ ∈ (0, 1). In this case, the
log-Laplace transform and the A-function satisfy

K(t) ≤ 1

2
t2 + log(1− δ), A(t) ≥ − log(1− δ).

Hence, the approach A(t)→ 0 is only possible when t→ 0. But, for strictly
subgaussian distributions, we necessarily have A(t) = O(t4) and A′′(t) =
O(t2) near zero. Therefore, the condition (8.2) is fulfilled.

Corollary 8.1. If a random variable X with mean zero, variance one,
and finite distance T∞(p||ϕ) satisfies the separation property (8.4), then
T∞(pn||ϕ)→ 0 as n→∞.

9. Characterization in the Periodic Case. Examples. Let us ap-
ply Theorem 2.1 to the Laplace transforms L(t) with

(9.1) Ψ(t) = L(t) e−t
2/2 = E etX e−t

2/2, t ∈ R,

being periodic, with some period h > 0. Suppose that EX = 0, Var(X) = 1,
and assume that:

1) Zn has density pn for some n = n0 such that T∞(pn||ϕ) <∞;
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2) X is strictly subgaussian, i.e. L(t) ≤ et2/2 or equivalently Ψ(t) ≤ 1 for
all t ∈ R.

Proof of Theorem 2.3 (first part). We need to show that the conver-
gence T∞(pn||ϕ)→ 0 is equivalent to the assertion that, for every 0 < t < h,

(9.2) Ψ(t) = 1 ⇒ Ψ′′(t) = 0.

First note that, due to Ψ(t) being analytic, the equation Ψ(t) = 1 has
finitely many solutions in the interval [0, h] only, including the points t = 0
and t = h (by the periodicity). Hence, the condition b) in Theorem 2.1 may
be ignored, and we obtain that T∞(pn||ϕ)→ 0 as n→∞, if and only if

(9.3) A′′(t) = 0 for every point t ∈ [0, h] such that A(t) = 0.

Here one may exclude the endpoints, since A′′(0) = A′′(h) = 0, by the strict
subgaussianity and periodicity. As for the interior points t ∈ (0, h), note
that A(t) = − log Ψ(t) has the second derivative

A′′(t) =
Ψ′(t)2 −Ψ′′(t)Ψ(t)

Ψ(t)2
= −Ψ′′(t)

at every point t such that Ψ(t) = 1 (in which case Ψ′(t) = 0 due to the
property Ψ ≤ 1). This shows that (9.3) is reduced to the condition (9.2).

In order to describe examples illustrating Theorem 2.3, let us start with
the following.

Definition. We say that the distribution µ of a random variable X is
periodic with respect to the standard normal law, with period h > 0, if it
has a density p(x) such that the function

q(x) =
p(x)

ϕ(x)
=
dµ(x)

dγ(x)
, x ∈ R,

is periodic with period h, that is, q(x+ h) = q(x) for all x ∈ R.

Here, q represents the density of µ with respect to the standard Gaussian
measure γ. We denote the class of all such distributions by Fh, and say that
X belongs to Fh. Let us briefly collect and recall without proof several
observations from [10] on this interesting class of probability distributions
(cf. Sections 10-13).

Proposition 9.1. If X belongs to Fh, then X is subgaussian, and the
function Ψ(t) in (9.1) is h-periodic. It may be extended to the complex plane
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as an entire function. Conversely, if Ψ(t) for a subgaussian random variable
X is h-periodic, then X belongs to Fh, as long as the characteristic function
f(t) of X is integrable.

Since
f(t) = L(it) = Ψ(it) e−t

2/2,

the integrability assumption in the reverse statement is fulfilled, as long
as Ψ(z) has order smaller than 2, that is, when |Ψ(z)| = O(exp{|z|ρ}) as
|z| → ∞ for some ρ < 2.

The periodicity property is stable under convolutions: The normalized
sums Zn belong to Fh

√
n, as long as X belongs to Fh.

This class contains distributions whose Laplace transform has the form
L(t) = Ψ(t) et

2/2, where Ψ is a trigonometric polynomial. More precisely,
consider functions of the form

Ψ(t) = 1− cP (t), P (t) = a0 +
N∑
k=1

(ak cos(kt) + bk sin(kt)),

where ak, bk are given real coefficients, and c ∈ R is a non-zero parameter.

Proposition 9.2. If P (0) = 0 and |c| is small enough, then L(t) repre-
sents the Laplace transform of a subgaussian random variableX with density
p(x) = q(x)ϕ(x), where q(x) is a non-negative trigonometric polynomial of
degree at most N .

Necessarily q is bounded, so that T∞(p||ϕ) <∞.
As for the requirement that P (0) = a0 + a1 + · · ·+ aN = 0, it guarantees

that
∫∞
−∞ p(x) dx = 1. In order to apply Theorem 2.3, there are two more

constraints coming from the assumption that EX = 0 and EX2 = 1.

Corollary 9.3. Suppose that the polynomial P (t) satisfies

1) P (0) = P ′(0) = P ′′(0) = 0;
2) P (t) ≥ 0 for 0 < t < h, where h is the smallest period of P .

If c > 0 is small enough, then L(t) represents the Laplace transform of a
strictly subgaussian random variable X. Moreover, if P (t) > 0 for 0 < t < h,
then T∞(pn||ϕ)→ 0 as n→∞.

In terms of the coefficients of the polynomial, the moment assumptions
P ′(0) = P ′′(0) = 0 are equivalent to

∑N
k=1 kbk =

∑N
k=1 k

2ak = 0. The
assumption 2) implies that 0 < Ψ(t) ≤ 1, and if P (t) > 0 for 0 < t < h,
then the equation Ψ(t) = 1 has no solution in this interval.
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Example 9.4. Consider the transforms of the form

(9.4) L(t) = (1− c sinm(t)) et
2/2

with an arbitrary integer m ≥ 3, where |c| is small enough. Then EX = 0,
EX2 = 1, and the cumulants of X satisfy γk(X) = 0 for all 3 ≤ k ≤ m− 1.

Moreover, if m ≥ 4 is even, and c > 0, the random variable X with
the Laplace transform (9.4) is strictly subgaussian. Hence the conditions
in Corollary 9.3 are met, and we obtain the statement about the Rényi
divergence of infinite order. In the case m = 4, (9.4) corresponds to

P (t) = sin4 t =
1

8
(3− 4 cos(2t) + cos(4t)).

Example 9.5. Put

(9.5) P (t) = (1− 4 sin2 t)2 sin4 t.

Then, P (t) = O(t4), implying that P (0) = P ′(0) = P ′′(0) = 0. Note that
Ψ(t) = 1− cP (t) is π-periodic, and h = π is the smallest period, although

Ψ(0) = Ψ(t0) = Ψ(π) = 1, t0 = π/6.

As we know, if c > 0 is small enough, then L(t) = 1− cΨ(t) represents the
Laplace transform of a strictly subgaussian random variable X. In this case,
the last assertion in Corollary 9.3 is not applicable. Thus, the property that
h is the smallest period for a periodic function Ψ(t) such that 0 ≤ Ψ(t) ≤ 1
and Ψ(h) = 1 does not guarantee that 0 < Ψ(t) < 1 for 0 < t < h.

Nevertheless, all assumptions of Theorem 2.3 are fulfilled for sufficiently
small c > 0 with h = π, and we may check the condition (9.2). In this case,

Ψ(t) = 1− cQ(t)2, Q(t) = (1− 4 sin2 t) sin2 t = sin2 t− 4 sin4 t,

so that Ψ′′(t) = −2cQ′(t)2 at the points t such that Q(t) = 0, that is, for
t = t0. Hence Ψ′′(t) = 0⇔ Q′(t) = 0. In our case,

Q′(t) = 2 sin t cos t− 16 sin3 t cos t = sin(2t) (1− 8 sin2 t),

and Q′(t0) = −1
2

√
3 6= 0. Hence Ψ′′(t0) 6= 0, showing that the condition

(9.2) is not fulfilled. Thus, the CLT with respect to T∞ does not hold in
this example.

The examples based on trigonometric polynomials may be generalized to
the setting of 2π-periodic functions represented by Fourier series

P (t) = a0 +
∞∑
k=1

(ak cos(kt) + bk sin(kt)).

Then, the assertions in Proposition 9.2 and Corollary 9.3 will continue to
hold, as long as the coefficients satisfy

∑∞
k=1 e

k2/2(|ak|+ |bk|) <∞.
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10. Richter’s Local Limit Theorem and its Refinement. We now
turn to the problem of convergence rates with respect to T∞, which can be
explored, for example, under the separation-type condition (2.2). In this
case, it was shown in Corollary 4.3 that pn(x) is much smaller than ϕ(x)
outside the interval |x| = O(

√
n). In the region |x| = o(

√
n), an asymptotic

behavior of the densities pn of the normalized sums

Zn = (X1 + · · ·+Xn)/
√
n

is governed by the following theorem due to Richter [32]. Assume that
(Xn)n≥1 are independent copies of a random variable X with mean EX = 0
and variance Var(X) = 1.

Theorem 10.1. Let E ec|X| < ∞ for some c > 0, and let Zn have a
bounded density for some n. Then Zn with large n have bounded continuous
densities pn satisfying

(10.1)
pn(x)

ϕ(x)
= exp

{ x3√
n
λ
( x√

n

)}(
1 +O

(1 + |x|√
n

))
uniformly for |x| = o(

√
n). The function λ(z) is represented by an infinite

power series which is absolutely convergent in a neighborhood of z = 0.

The corresponding representation

(10.2) λ(z) =
∞∑
k=0

λkz
k

is called Cramer’s series; it is analytic in some disc |z| ≤ τ0 of the com-
plex plane. The proof of this theorem may also be found in the book by
Ibragimov and Linnik [19], cf. Theorem 7.1.1, where it was assumed that
X has a continuous bounded density. The representation (10.1) was further
investigated there for zones of normal attraction |x| = o(nα), α < 1

2 .
One immediate consequence of (10.1) is that

(10.3)
pn(x)

ϕ(x)
→ 1 as n→∞

uniformly in the region |x| = o(n1/6). However, in general this is no longer
true outside this region. To better understand the possible behavior of densi-
ties, one needs to involve the information about the coefficients in the power
series (10.2). As was already mentioned in [19], λ0 = 1

6 γ3, λ1 = 1
24 (γ4−3γ23).
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However, in order to judge the behavior λ(z) for small z, one should describe
the leading term in this series. The analysis of the saddle point associated
to the log-Laplace transform of the distribution of X shows that

(10.4) λ(z) =
γm
m!

zm−3 +O(|z|m−2) as z → 0,

where γm denotes the first non-zero cumulant of X (when X is not normal).
Equivalently, m is the smallest integer such that m ≥ 3 and EXm 6= EZm,
where Z ∼ N(0, 1). In this case γm = EXm − EZm.

Using (10.4) in (10.1), we obtain a more informative representation

(10.5)
pn(x)

ϕ(x)
= exp

{
γm
m!

xm

n
m
2
−1 +O

(xm+1

n
m
2

)}(
1 +O

(1 + |x|√
n

))
,

which holds uniformly for |x| = o(
√
n). With this refinement, the conver-

gence in (10.3) holds true uniformly over all x in the potentially larger region

|x| ≤ εn n
1
2
− 1
m (εn → 0).

For example, if the distribution of X is symmetric about the origin, then
γ3 = 0, so that necessarily m ≥ 4.

Nevertheless, for an application to the T∞-distance, it is desirable to get
some information for larger intervals such as |x| ≤ τ0

√
n and to replace the

term O( |x|√
n

) in (10.5) with an explicit n-dependent quantity. For this aim,

the following refinement of Theorem 10.1 was recently proved in [9].

Theorem 10.2. Let the conditions of Theorem 10.1 be fulfilled. There is
τ0 > 0 with the following property. Putting τ = x/

√
n, we have for |τ | ≤ τ0

(10.6)
pn(x)

ϕ(x)
= enτ

3λ(τ)−µ(τ) (1 +O(n−1(log n)3)
)
,

where µ(τ) is an analytic function in |τ | ≤ τ0 such that µ(0) = 0.

Here, similarly to (10.4),

µ(τ) =
1

2(m− 2)!
γmτ

m−2 +O(|τ |m−1).

As a consequence of (10.6), we have the following assertion which was
also derived in [9] (note that it cannot be obtained on the basis of (10.1) or
(10.5)).
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Corollary 10.3. Under the same conditions, suppose that first non-zero
cumulant γm of X is negative and m ≥ 4 is even. There exist constants
τ0 > 0 and c > 0 with the following property. If |τ | ≤ τ0, τ = x/

√
n, then

(10.7)
pn(x)

ϕ(x)
≤ 1 +

c(log n)3

n
.

Proof of Theorem 2.2. It remains to combine Corollary 4.3 with Corol-
lary 10.3 and note that, for any strictly subgaussian random variable X with
variance one, m is even and γm < 0. Indeed, the log-Laplace transform of
the distribution of X admits the following Taylor expansion near zero

K(t) = logE etX =
1

2
t2 +

∞∑
k=3

γk
k!
tk

=
1

2
t2 +

γm
m!

tm +O(tm+1),

which is a definition of cumulants. Hence, the strict subgaussianity, that is,
the property K(t) ≤ 1

2 t
2 for all t ∈ R implies the claim.

Proof of Theorem 2.3 (convergence part). For simplicity, let n0 = 1,
so that the random variable X has density p with T∞(p||ϕ) < ∞. By the
assumption, EX = 0, Var(X) = 1, and

L(t) = E etX = Ψ(t) et
2/2, t ∈ R,

for some periodic function Ψ(t) with period h > 0 such that 0 < Ψ(t) < 1
for all 0 < t < h. Hence

L(t/
√
n)n = E etZn = Ψn(t) et

2/2, Ψn(t) = Ψ(t/
√
n)n,

where the function Ψn(t) has period h
√
n. Since the density p is bounded, the

characteristic function of X is square integrable. Hence, the characteristic
function of Zn is integrable whenever n ≥ 2. In this case, we are in position to
apply Proposition 9.1 to the random variable Zn and conclude that it has a
continuous density pn which is periodic with respect to the standard normal
law with period h

√
n. That is, pn(x) = qn(x)ϕ(x) for some continuous,

periodic function qn with period h
√
n. We need to show that

(10.8) sup
x

(qn(x)− 1) = O
((log n)3

n

)
as n→∞.

In view of periodicity, one may restrict this supremum to the interval
0 ≤ x ≤ h

√
n. But, if 0 ≤ x ≤ τ0

√
n, where τ0 is taken as in Corollary 10.3,
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we obtain the desired rate due to (10.7). Here, without loss of generality one
may assume that τ0 < h. Since qn(x) = qn(x − h

√
n), the same conclusion

is also true, if we restrict the supremum to (h− τ0)
√
n ≤ x ≤ h

√
n. Finally,

if τ0
√
n ≤ x ≤ (h− τ0)

√
n, we apply the bound (4.3) which gives

qn(x) ≤ c
√

2 Ψ
( x√

n

)n−1
, c = 1 + T∞(p||ϕ).

Since Ψ(t) is continuous, supτ0≤t≤h−τ0 Ψ(t) < 1. Hence the expression on
the right-hand side is exponentially small for growing n. Collecting these
estimates, we arrive at (10.8).

11. Examples Based on Weighted Sums. Here we describe some
examples illustrating Theorem 2.2. It involves the separation condition (2.2)
on the Laplace transform,

(11.1) sup
|t|≥t0

[
e−t

2/2 E etX
]
< 1 for all t0 > 0,

and states the following speed of convergence in the CLT

(11.2) D∞(pn||ϕ) = O
((log n)3

n

)
as n→∞,

provided that the necessary condition D∞(pn||ϕ) < ∞ for some n = n0
holds, where pn denote the densities of the normalized sums Zn constructed
for independent copies of a random variable X with EX = 0, Var(X) = 1.

While in general this condition is rather delicate, in the simplest case
n0 = 1, it reduces to the pointwise subgaussian bound

(11.3) p(x) ≤Mϕ(x), x ∈ R,

which should hold with some constant M for a density p of the random vari-
able X. This property is obviously fulfilled, when the density p is bounded
and compactly supported; the rate (11.2) holds as well for a family of proba-
bility distributions whose Laplace transform contains a periodic component
(see remarks after Proposition 9.2). We now consider further examples where
the density p is representable as a “weighted” convolution of at least two
densities satisfying (11.3). More precisely, we have:

Corollary 11.1. Assume that X satisfies (11.1) and is represented as

(11.4) X = c0η0 + c1η1 + c2η2, c20 + c21 + c22 = 1, c1, c2 > 0,
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where the independent random variables ηk, k = 0, 1, 2 are strictly subgaus-
sian with variance one and satisfy D∞(ηk||ϕ) < ∞ for k = 1, 2. Then the
CLT holds with rate (11.2).

As an interesting subclass, one may consider infinite weighted convolu-
tions, that is, random variables of the form

(11.5) X =

∞∑
k=1

akξk,

∞∑
k=1

a2k = 1.

Corollary 11.2. Assume that the i.i.d. random variables ξk are strictly
subgaussian and have a bounded, compactly supported density with variance
Var(ξ1) = 1. If ξ1 satisfies (11.1), then the CLT holds with rate (11.2).

This statement includes, for example, infinite weighted convolutions of
the uniform distribution on a bounded symmetric interval.

By Theorem 2.2, Corollary 11.1 follows from the next general assertion.

Lemma 11.3. Suppose that the random variable X is represented in
the form (11.4), where the random variables η0, η1, η2 are independent and
possess the properties:

a) η0 is strictly subgaussian with Var(η0) = 1;
b) η1, η2 have densities q1, q2 such that qk(x) ≤ Mkϕ(x) for all x ∈ R

with some constants Mk (k = 1, 2).

Then X has a density p satisfying (11.3) with constant M = 1√
2c1c2

M1M2.

Proof. The case c0 = 0 is simple. Then X has density

p(x) =
1

c1c2

∫ ∞
−∞

q1

(x− y
c1

)
q2

( y
c1

)
dy, x ∈ R,

which, by the assumption, does not exceed

M1M2

c1c2

∫ ∞
−∞

ϕ
(x− y

c1

)
ϕ
( y
c1

)
dy = M1M2 ϕ(x).

Hence, (11.3) is fulfilled with constant M = M1M2 (which is better than
what is claimed in the lemma, since 2c1c2 ≤ 1).

In the basic case c0 > 0, introduce the characteristic functions fk(t)
of ηk and put gk(t) = fk(ckt), k = 0, 1, 2. Since the densities q1, q2 are
bounded, they belong to L2(R) together with their characteristic functions
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f1, f2, according to the Plancherel theorem. The same is true for g1, g2, so
that the characteristic function of X,

(11.6) f(t) = g0(t)g1(t)g2(t),

is integrable on the real line (using |g0(t)| ≤ 1 for all t ∈ R). As a conse-
quence, the random variable X has a continuous density described by the
inversion formula

(11.7) p(x) =
1

2π

∫ ∞
−∞

e−itxf(t) dt, x ∈ R.

Moreover, the pointwise subgaussian bounds on the densities qk in b)
for k = 1, 2 ensure that E eλη2k < ∞ for λ < 1

2 , implying that the random
variables ηk are subgaussian. Since η0 is also subgaussian, we conclude that
X is subgaussian as well. Hence, all gk(t) and f(t) may be extended from
the real line to the complex plane as entire functions of order at most 2, and
thus, (11.6) holds true for all t ∈ C.

For definiteness, let x < 0 in (11.7). We use a contour integration to
obtain a different representation for p(x). Fix T > 0, y > 0, and ap-
ply Cauchy’s formula for the oriented contour consisting of the segments
[−T, T ], [T, T + iy], [T + iy,−T + iy], [−T + iy,−T ]∫ T

−T
e−itxf(t) dt+

∫ y

0
e−i(T+ih)xf(T + ih) dh

=

∫ T

−T
e−i(t+iy)xf(t+ iy) dt+

∫ y

0
e−i(−T+ih)xf(−T + ih) dh.(11.8)

Here, the two integrals taken over the interval [0, y] are vanishing as T →∞.
To prove this, first let us note that the functions

qk,h(x) = e−hxqk(x), x ∈ R (k = 1, 2),

are integrable for every h ∈ R and have the Fourier transform

q̂k,h(t) =

∫ ∞
−∞

eitx qk,h(x) dx = E ei(t+ih)ηk = fk(t+ ih).

We may therefore conclude by applying the Riemann-Lebesgue lemma that
fk(t + ih) → 0 as |t| → ∞. Moreover, this convergence is uniform over all
0 ≤ h ≤ y, which is due to the assumption b). Indeed, since the mapping
h → qk,h from [0, h] to L1(R) is continuous, for any ε > 0, one can choose
the points 0 = h0 < h1 < · · · < hN = y such that ‖qk,h − qk,hj‖L1 < ε for

imsart-aop ver. 2014/10/16 file: "CLT for Renyi D_infinity_aop_Revision.modv2_Refinement".tex date: July 3, 2024
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all h ∈ [hj , hj+1], 0 ≤ j ≤ N − 1. In particular, supt |q̂k,h(t) − q̂k,hj (t)| < ε.
By the Riemann-Lebesgue lemma, for every j, there is tj > 0 such that
sup|t|≥tj |q̂k,hj (t)| < ε. As a consequence,

sup
h∈[0,y]

sup
|t|≥T

|fk(t+ ih)| < 2ε,

by choosing T = max{t1, . . . , tN}. A similar property holds true for gk,
k = 1, 2, and therefore for the characteristic function f in (11.6), we get

sup
h∈[0,y]

sup
|t|≥T

|f(t+ ih)| → 0 as T →∞.

As a result, in the limit as T → ∞ the identity (11.8) leads to the
equivalent variant of (11.7),

p(x) =
eyx

2π

∫ ∞
−∞

e−itxf(t+ iy) dt,

which yields

(11.9) p(x) ≤ eyx

2π

∫ ∞
−∞
|f(t+ iy)| dt.

In the next step we need to estimate the integrand in (11.9). In view of
the bound

|g0(t+ iy)| = |E eic0 (t+iy)η0 | ≤ E e−c0y η0 = g0(iy),

(11.6) gives
|f(t+ iy)| ≤ g0(iy) |g1(t+ iy)| |g2(t+ iy)|.

Applying this in (11.9) and using Cauchy’s inequality, we get

p(x) ≤ eyxg0(iy)
1

2π

∫ ∞
−∞
|g1(t+ iy)| |g2(t+ iy)| dt

≤ eyxg0(iy)

(
1

2π

∫ ∞
−∞
|g1(t+ iy)|2 dt

)1/2( 1

2π

∫ ∞
−∞
|g2(t+ iy)|2 dt

)1/2

=
eyxf0(ic0y)

2π
√
c1c2

(∫ ∞
−∞
|f1(t+ ic1y)|2 dt

)1/2(∫ ∞
−∞
|f2(t+ ic2y)|2 dt

)1/2

.

Applying the Plancherel theorem and using the pointwise subgaussian bound
in b), we get

1

2π

∫ ∞
∞
|fk(t+ icky)|2 dt =

∫ ∞
∞

e−2ckyxq2k(x) dx

≤ M2
k

∫ ∞
∞

e−2ckyx ϕ2(x) dx =
M2
k

2
√
π
ec

2
ky

2
.
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In addition, by the assumption a), f0(ic0y) = E e−c0y η0 ≤ ec20y2/2. Combining
these estimates, we arrive at

p(x) ≤ eyx√
2c1c2

M1M2√
2π

e(c
2
0+c

2
1+c

2
2) y

2/2.

It remains to choose y = −x and recall the assumption c20 + c21 + c22 = 1.
We conclude this section with

Proof of Corollary 11.2. To apply Theorem 2.2, we only need to check
that X has a density p(x) satisfying (11.3). Let q(x) denote the common
density of ξk, which is supposed to be bounded and compactly supported.
Without loss of generality, let a1 ≥ a2 ≥ · · · ≥ 0.

Case 1: a1 = 1 and an = 0 for all n ≥ 2. Then p = q, so that p(x) ≤
M1ϕ(x) a.e. for some constant M1 ≥ 1.

Case 2: a2 > 0. Then X = c0η0 + c1η1 + c2η2, where

c0η0 =
∞∑
n=3

anξn, η1 = ξ1, η2 = ξ2, c1 = a1, c2 = a2.

If a3 > 0, then c0 =
√

1− a21 − a22, so, η0 is well-defined, strictly-subgaussian,
and has variance one. Otherwise, we may put c0η0 = 0. By Lemma 11.3, the
relation p(x) ≤ Mϕ(x) a.e. holds true with constant M = 1√

2a1a2
M2

1 , thus

proving (11.3).
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